Total internal reflection fluorescence in biological systems
نویسندگان
چکیده
منابع مشابه
Total internal reflection fluorescence.
Total internal reflection fluorescence (TIRF) is an optical effect particularly well-suited to the study of molecular and cellular phenomena at liquid/solid interfaces. Such interfaces are central to a wide range of biochemical and biophysical processes: binding to and triggering of cells by hormones, neurotransmitters, and antigens; blood coagulation at foreign surfaces; electron transport in ...
متن کاملAlignment and calibration of total internal reflection fluorescence microscopy systems.
Live cell fluorescent microscopy is important in elucidating dynamic cellular processes such as cell signaling, membrane trafficking, and cytoskeleton remodeling. Often, transient intermediate states are revealed only when imaged and quantitated at the single-molecule, vesicle, or organelle level. Such insight depends on the spatiotemporal resolution and sensitivity of a given microscopy method...
متن کاملTotal internal reflection fluorescence (TIRF) microscopy.
Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region ("optical section"). The method is based on the principle that when excitation light is totally internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid, an electromagnetic field, ca...
متن کاملTopic Introduction Total Internal Reflection Fluorescence Microscopy
The goal in fluorescence microscopy is to detect the signal of fluorescently labeled molecules with great sensitivity and minimal background noise. In epifluorescence microscopy, it is difficult to observe weak signals along the optical axis, owing to the overpowering signal from the out-of-focus particles. Confocal microscopy uses a small pinhole to produce thin optical sections ( 500 nm), but...
متن کاملTotal internal reflection fluorescence flow cytometry.
Total internal reflection fluorescence microscopy (TIRFM) has been widely used to explore biological events that are close to the cell membrane by illuminating fluorescent molecules using the evanescent wave. However, TIRFM is typically limited to the examination of a low number of cells, and the results do not reveal potential heterogeneity in the cell population. In this report, we develop an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Luminescence
سال: 1984
ISSN: 0022-2313
DOI: 10.1016/0022-2313(84)90152-2